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The motion of a satellite in an orbit sufficiently distant from the 

earth is mostly affected by the gravitational forces and moments. A 

number of Papers by Beletskii, Sarychev [l-4] and others is devoted to 

the investigation of the motion of a satellite about its center of mass 

under the action of gravitational moments. In Il.31 Beletskii investi- 

gated the case when the kinetic energy of motion about the center of 

mass is much greater than the work of the external moments, the satellite 

possesses dynamic symmetry, and the orbit is circular or nearly circular. 

The motion of the satellite is in this case characterized by regular 

precession about the angular momentum vector as well as by a slow pre- 

cession of the angular momentum vector itself. 

Below are considered two cases of satellite motion under the action 

of gravitational moments when the existence of a small parameter permits 

application of the method of averaging and derivation of an asymptotic 

solution. The accuracy of these solutions is evaluated. 

In the first case, the values of the three principal central moments 

of inertia of the satellite are assumed close although different. The 

orbital eccentricity and angular velocity of the satellite are arbitrary. 

Unperturbed motion represents steady rotation about the fixed axis. The 

translations of the fixed axis in space and relative to the body are de- 

termined. 

In the second case, as well as in [l, 31, the kinetic energy of the 

relative motion is considered large compared to the work of the gravita- 

tional moments, but no restrictions are imposed on the orbital 
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eccentricity and the moments of inertia. The satellite motion is con- 
structed from the Euler-Poinsot motion about the angular molaentam vector 

and the angular momentum vector motion itself. This vector performs pre- 
cessional motion upon which are imposed finer effects: oscillations of 
the nutation and precession angles. The derived results generalize the 
corresponding formulas of Beletskii [I]. 

1. Let us consider the motion of a rigid body (satellite) in a central 
gravitational field. It may be considered that within the accuracy of 

terms up to the square of the ratio of the linear dimension of the 

satellite to that of the orbit, the motion of the satellite about its 

center of mass does not affect the motion of the center of the mass. 

The center of mass moves on a Keplerian ellipse with eccentricity e 

and rotation period To. ‘Ihe dependence of the true anomaly v on time t 
is given by the relation 

dV 25% 
% = 

w, (1 Jr e cos v)" 
(1 _ e2)” i 

v(t+Tc)=v(t)+2n, co,=- 
To 

f1.f) 

Let us introduce three right-handed Cartesian systems of coordinates, 
the origins of which will coincide with the center of inertia of the 
satellite. 

The system of coordinates x1x2x3 translates along with the center of 
inertia; the xl-axis is parallel to the radius vector of the orbit 
perigee, the x*-axis is parallel to velocity vector of the center of 
mass at perigee, and the x3 -axis is parallel to the normal to the orbit 
plane. 

The y3-axis of the system ylyzys will be directed along the angular 
momentum vector G of the satellite about the center of inertia, the yl- 
axis is perpendicular to y3 and lies in the plane r3y3, while y2 is per- 
pendicular to yI and yj and, consequently, lies in the plane of the 
orbit xlxZ (Fig. I). 

The transfer from the orbital system of coordinates ~~~~~~ to the 
system y1y2y3 is realized by two rotations: by the angle h about x3 and 
by the angle 6 about y2. The angles h and 6 define the orientation of 
the vector G in fixed space. 

The axes of the coupled system of coordinates zIz2z3 will coincide 
with the principal central axes of inertia of the satellite. Their 
orientation relative to the system of coordinates yIy2y3 will be defined 
by the Euler angles 9. 9, y as well as by the direction cosines aik=yizk. 

Unit vectors of the coordinates are denoted by the same letters as 
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the axes. The following relationships are given between the direction 

cosines and the Euler angles 

(1.2) 
uu = coscpcos~- cos 8 sin q sin 1c) 

al9 = -sincpcos$--cos@coscpsin$ 

au = sin 6 sin $, aaI=cospsing+cosOsincpcos~ 

ass =-sincpsio~+cos0coscpc0s~, 

0s rz - sin fj cos 9 

as1 = sin 8 sin cp, as2 = sin 0 coscp, 333 = cos 8 

2. Let us write the equations of motion 

for the satellite about its center of inertia, 
Fig. 1. 

choosing for the six required functions the angular momentum G and the 
angles 6, A, 0, 9, v. ‘Ihe moment equation in terms of the yl, yg, ys 

components i s 

dG L d6 Ll dl. La 
z= 8, ;ii’g-, x=.- 

Gsm6 (2.4) 

where Li are the projections of the moments of external forces about the 

center of inertia on the yi-axes. 

Projections of the o vector for the absolute angular velocity of the 

satellite on the zl-, zg-, +-axes are 

P = 6u,, + x (a,, cos 6 - a,, sin 6) + 6 cos cp + $a, 

9 = Aa,, + X (a,, cos 6 - uI2 sin 6) - Cl sin cp + +a= (2.2) 

r = Au,, + L(cz,,cos 6 - a,,sin 6) +6, ++tg3 

On the other hand, the projection of the vector G on these axes 

gives 
(2.3) 

G, = Ap = G sin fl sin cp, G2 = Bq = G sin 0 cos cp, G3 = Cr = Gcos8 

where A, B, C are the principal central moments of inertia of the 

satellite relative to the zl-, z2-, z3-axes respectively. 

Substituting p, q, r from the equation (2.3)) 6, i from (2. I), and 

aij from (1.2) into the equation (2.2)) we obtain the solutions for the 

derivatives of the Ruler angles 8, 9, v 

4 = Gsinesincpcoscp(k-&$)+ Lacos9~L1sinrp 
L~cos~++sinqJ 

G sin 8 (2.4) 
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;p __yizft f e$v) Llcos~~~sin~ Qit 8 _: c9t 6 

The equations (2.1) and (2.4) constitute an initial system of equa- 

tions in the form convenient for application of asymptotic methods. 

Let us wfite, in addition, using (2.3), (2.1) and (2.4), the ex- 

pressions for the kinetic energy T of the satellite motion about its 
center of mass and its derivative 

3. We assume that the satellite is acted upon only by Newtonian 

forces directed toward a fixed center. Within the accuracy of higher 

order terms in the ratio of the linear dimensions of the satellite to 

those of the orbit, the moment of these forces about the center of mass 
of the satellite is [2] 

L = W-’ t(C - B) TSTSZ, + (A - C) rrraz, + (B - A) rrrzz,l (3.1) 

Here yi are the direction cosines of the satellite inertia center 

radius vector R directed from the fixed center of attraction with the 

principal central axes of inertia zi and ~1 is the gravitational constant. 

We project equation (3.1) on the yi-SXeS. The direction cosines of the 

radius-vector R with the yi-axes are denoted by pi. 

Expressing yi through pi and oik, and u, R through V, e, o. in 
accordance with the formulas for elliptic motion, we obtain 

L, = 3w,B (1 + e cos Y)” (1 - $)-a 

L, = 30: (1 + e cos v)” (1 - e2)-3 

L, = 3w02 (a + e cos $3 (1 - e2)-” 

j=i 
3 

j=l 

3 

2 @lSjs2j - B2Pjsli) 
j=t 

~ij = Aailap + Baizaiz + Caisajs (3.3) 

For computing pi we note that R lies in the orbit plane x1x2 and 
forms with the xl-axis the angle v. ‘Ihen (see Fig. 1) 
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p1 = cos 8 cos (Y - A), b2 = sin (Y - A.), & = siIl8cos (Y - h)(3.4) 

4. In order to solve the system (2.1) and (2.5) we will apply the 

asymptotic method of Krylov and Bogoliubov (the method of averaging) 

[51 in the form developed by Volosov c6,71 (generalization of the method 

of the rapidly rotating phase of Rogoliubov and Zubarev). 

Volosov [6,71 considered the system of the form 

& = ex (2, y, t, e), j, = Y (2, y, t, 8) @<1) (4.1) 

where x, X are n-dimensional, and y, Y are m-dimensional vector-func- 

tions, E is a small parameter. lhe quantities n will be "slow", and y 

will be "rapid" variables. 'Ihe general solution of the unperturbed (de- 

generate) system 

x = const, i = y (2, y, t, 0) (4.2) 

which is obtainable from (4.1) for E = 0, is assumed known. We will de- 

note this solution, which satisfies arbitrary initial conditions 

Y(Q = yo, by Y(X, yo, t). ‘Ihe asymptotic solution of the system (4.1) 

in the kth approximation is sought in the form 

x = g + eul (f , q7 t) f . . . + ek-lUk-l (%, q, t) 
~=~+E~1(%,~,t)+-..+~k-2~k-2(%,tl,t) 

(4.3) 

where the variables c, q satisfy the system of kth approximation 

i = 8-4, (E) + e2A2 (!j) + . . . + ekAk (E) 
i = Y (g , q, t, 0) + eB, (g) + . . . + ek-l&-l (%) 

(4.4) 

The function A,(c) is of the form 

where M, denotes 

perturbed system 

A, (E) = Mt lx 6, Y, t, 0)) (4.5) 

the averaging operation along the solutions of the un- 

(4.2) 

I T 
Mt {f (5, y, t)} = lim -i T_ T \ f (2, Y (x1 90, t)v 0 dt 

1, 

(4.6) 

It is assumed that the result of averaging in (4.5) is independent 

of the initial conditions to, y. which is valid for a wide class of 
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cases. 

References L6.71 give a construction algorithm for the functions ui, 
vi, Ai, Bi and formulate theorems subst~tiating this method. For 
certain general restrictions the difference of the kth approximation 
(4.3) from the exact solution willkb; for the variables x of order ek. 
and for the variables y of order E - on the interval of variation t of 

order E -l. Note that the system (4.4) is significantly simpler than the 

original one since the equations for the variables < are autonomous and 
are integrated separately. 

5. bt the principal central moments of inertia for the satellite be 
nearly equal to each other, i.e. are of the form 

A = J, f EA’, B = J, -i_ EB’, c = J, +- EC (8 < 1) (5.4) 

For E = 0 it follows from (3.3) and (5.1) that S;j = J,8ij (6ij is 
the Kronecker delta) and then from (3.2) we have L, = L, = L, = 0. From 
the (2.1) and (2.4) we get for this case that G, 6, A, 8, and g, are con- 
stant, and 

i.e. the satellite rotates uniformly about the translating axis of the 

angular momentum. 

For small E f 0, we obtain from (3.3) and (3.2) that sij = JOSij + 

O(E). Li = WE). Then the system of seven equations (1.1). (2. I), (2.4) 
with (3.2) is apparently a system of the type (4.1). where the role of 
the wslown variables (r) is played by G, 6, h, 6, Q, while that of the 
“rapid” variables (y) is played by y and v. In order to obtain the solu- 
tion in the first approximation it is sufficient to simply average the 
right-hand sides of the equations (2.1) and (2.4) substituting for v 
from the solution of the equation (1.1) and q~ from the equation (5.2). 
For fixed values of the “slow” variables, the right-hand sides of the 
equations, subject to averaging, will be the sums of terms of the form 
fl(y) fz(v). where the functions fI, f2 are periodic in their arguments 
with periods 2~. Also, as may be easily shown, the Fourier expansion of 
fl(v) contains no harmonics higher than third. Therefore, the expansion 
of the right-hand sides of equations (2.1) and (2.4) into double Fourier 
series (in y and v), after substitution of q~ and v as functions of time, 
will be a sum of terms of the form 

Cm, cos [m (GJo-’ t + +o)] cos noot fm = 0, 1, 2, 3; n = 0, i, 2 . . .) 

and similar terms where one or both cosine terms cau be replaced by the 
sine terms. Let for no natural n no equality 
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c = IZJOWO, c= 2 -LJooo, 1 
G = -pJooo (5.3) 

be satisfied. 

Thea, the result of averaging the right-hand sides in accordance with 
(4.6) is independent of the initial value of yyo. In this case the tine 
averaging can be replaced by the independent averaging with respect to 
q~ and v, as with respect to the function of t. 

If, however, any of the equalities (5.3) are satisfied. then reso- 
nance effects take place which are not considered here. 

The time averaging of the functions dependent on v is reduced, in 

accordance with (1.1). to the averaging with respect to v as follows 

(5.4) 

f b9 
= fi - @PQf.J {(i + e cosv)e i 

Averaging the right-hand sides of the equations (2.1) and (2.4) 

(taking into account (3.2), (3.3) and (1.2)) initially with respect to 
y, and then with respect to v in accordance with (5.41, we will obtain 

the equations of first approximation in the form 

d = 0, s = 0, + = G Jo-l + 0 (E) (5.5) 

i = 36.Q cos 6 

4G (1 -t+i2 
(A + B + C - 3 [(A sin2rp + 23 cos2 up) sine B 4 C COS’ 811 

6 = Gsin0sincpcosrp(a-_)-j- 3~~((1~~~~6) (A - El) sin 8 sin rp cos cp 

(b = G cos 6 (& - ‘y - ‘9) - 3w,a (I - 3 COG 6) 
4G (f _ e213,2 cos 6 (A sin2 ‘p $ 

+B cos*qJ - C) 

For further simplification of (5.5) we note that within the accuracy 

of terms of order s2, in accordance with (5.11, we have 

1 2 A -=-_- 
‘4 J* J@” ’ 

A = 2J,-$. 

and analogously for the moments of inertia R, C. IJtilizing these 

approximate equalities we transform (5.5) without decreasing the 

of accuracy in a 

i: =o, 8 =o, i = 0 + 0 (e), ji= 3O@W cos ci 

4G (1 - e2)S/2 

order 

(5.61 
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b = G sin 0 sin cp coscp (f - $) D, ci,=GcosO &T-- ( 
sin8 cp COS cp 

B ) 
J9 

Here (5.7) 

cD = 6TJoa 
- - I,2 (a + ; + &), 

Ga 
D = 1 - O=f 

0 

where 7’ is defined by the formula (2.5). 

‘Ihe solution of the system (5.6) approximates the exact solution of 
the system (2.1) and (2.4) in the interval of time of order T,,s-l much 
higher than the satellite rotation period within the 
E for “slow” variables G, 6, h, 8, 9, and within the 
1 for v. 

‘lhe relative motion of the satellite described by 

separates into three parts: “rapid” motion (variable 
motions (variables 0, 9, and G, 6, A). 

accuracy”of order 
accuracy of order 

the equations (5.6) 

I+) and two “slow” 

‘Ihe “rapid” motion represents the satellite rotation about the 

angular momentum vector with angular velocity o = GJ,-‘, constant in 
accordance with the first equation in (5.6). 

‘lhe equations for the variables 0, p describe the motion of the 

angular momentum vector about the satellite. It is easy to see that 
these equations differ from the equations for 0, 9 for the case of the 
free motion of the body (first two equations (2.4) for L = 0, the case 
of Euler-Poinsot) only by the multiplier D (5.7), constant in the given 
approximation. 

‘lhus, the action of the gravitational moments merely alters by a con- 
stant number D the translation velocity of the vector G along its 
trajectory of motion in the case of Euler-Poinsot. ‘Ihese trajectories 
are determined from the relationships stenvning from (2.3) and (2.5) as 

where G and T are constant. A number of such trajectories for fixed T 
and various G is shown in Fig. 2, where the arrows give the direction 
of motion for the Euler-Poinsot case and where A > B > C [8]. ‘Ihe 
quantity D (5.7) can have a wide range and even be negative which cor- 
responds to the change in the direction of motion in Fig. 2. As in the 
case of Euler-Poinsot, the permanent rotation axes are the principal 
axes of inertia, the rotation about the z2-axis being unstable while 
that about zr, z3 is stable. 



716 F.L. Chernous'ko 

However, when the condition 

G v- -._- 
m=--_= 3 (1 - 3 toss 8) 

Jo 4 (1 - p2)3l2 (J-)0 

is satisfied, the satellite rotation will 

be stationary for any orientation of the 

rotation axis relative to the satellite. 

In this case the moments of the centri- 

fugal and gravitational forces in the 

first approximation are in equilibrium, 

and the vector 6 is not translating rela- 

tive to the body. 
Fig. 2. 

Ihe motion of the vector G in space is described by the first three 

equations (5.6) and represents steady rotation of the vector G about the 

normal to the orbit plane at a constant angular displacement F from it. 

The angular velocity of rotation i is a quantity of order eo02,-1 

(since @ = EJ,,) while its sign depends on the character of the motion G 

relative to the satellite. For example, if 6 < r/2 then for rotation of 

the satellite about the axis of largest moment of inertia zI (C2 = 2TA) 

we obtain from (5.7) that 0, < 0, x < 0 (rotation of c in the direction 

opposite to the orbital motion), while for C2 = 2TC (rotation about 

tJ i ’ 0. 

6. Let us consider another case of small parameter introduction into 

the equations of motion of the satellite. The moments of inertia are 

considered arbitrary (A > R >C). Let us assume that the angular velo- 

city of the satellite relative motion is much higher than the angular 

velocity of the orbital motion, and let EwAu,,/G << 1. Let the unit of 

time measurement be a quantity on the order of the period of relative 

motion, then o. = E, while the moments of the gravitational forces 

Li Q s2 (3.2). The case being considered corresponds to large kinetic 

energy of rotation (compared to the work of the external forces); the 

asymptotics of such motions for a single degree of freedom system has 

been studied by IZoiseev [91. 

The unperturbed motion (E = 0) will be the Euler-Poinsot motion, the 

quantities G, 6, h and T being constant. The function y can be expressed 

in the form v = vVl(t) f am. where 8, 9 and y are periodic in t with 

a period -r of the motion of the vector 0 along the closed trajectories 

of Fig. 2 (or obtain constant increments 2~ in time 7). The second com- 

ponent y2 = 2st /-r ‘, while the periods T and -r’, dependent on G and T, 

are generally speaking, incommensurable Ltd. 

In the perturbed motion (E f 0) the “slow” variables (n) are c, 6, 

h and T, while the “rapid” are ‘p and v (0 is expressed in terms of T 
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and 9 by means of (2.5)). The equations of motion and (1.1) can be re- 

presented as 

j: = E2x (5, y,Y), i = Y, (2, y) -!- e2Y, (5, y, Y), 4 = e/(v) (6.3) 

It can be easily seen that in constructing the solutions of the type 

(4.3) for the system (6.1) uI = v1 s 0, while A, = B, = A, 5 0, A, = 

M,(X) in system (4.4). The solution for the “slow” variables will be 

sought in the form 

x = Et i = e2Az (5, 4 = e2Mt lx 6, y, 9 (6.2) 

neglecting the terms of order E 2 in (4.3) and of order a4 in (4.4). 

Therefore the error of the asymptotic solution for “slow” variables 

will be on the order of e2 on the interval of time of order E-‘, which 

corresponds to the number of revolutions of the satellite in orbit of 

order s-1 (Av * E-~). 

In order to construct the averaged system (6.2) it is necessary to 

average the right-hand sides of the equations of motion (for fixed 

“slow” variables and v) along the Euler-Poinsot motion. These right- 

hand sides are periodic functions of 8, 9 and ‘y with periods 2r, while 

the periods T and T* are incomnensurable. Therefore, using the arguments 

similar to those in Section 5, we establish that the averaging can be 

accomplished in two steps: with respect to 0, cp, yI, and with respect to 

V2’ as with respect to the functions of time. Thus, 

+ t’ 

Mt cf ($9 9, W = $ ~~~(e ($tp (t), s,(t) +qdt*dt = 
00 

(6.3) 
0 a 

Here My denotes the averaging with respect to y, and M, in 0 and cp 

related by (2.5) being carried out along the closed trajectories of the 

angular momentum vector in the Euler-Poinsot motion (Fig. 2). 

Averaging the right-hand sides of equations (2.1) and (2.6) in 

accordance with (6.3) we obtain a system of first approximation 
(6.4) 

i: = 0, kj=_ 

+ = 3mr?(f + e cos vY (28 2 
2(1 - e2)3 

s _ g,a _ fl22) (A-@(B---C)w---A) 

ABCGz M, GG,Gd 

N = A -j- B + C - 3M, {(A sina cp + B cos2 cp) sin2 0 + C cos2 O} (6.5) 
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On the strength of the symnetry of the vector G trajectory about the 

coordinate planes of the system zlt2z3, it is obvious that M1(C,, G,, 
G3) = 0, and T = const. For nearly equal moments of inertia A, B, C 
(5.1) N coincides with (0 (5.7). In the general case, utilizing (2.3) 
and (2.51, we obtain 

N=l3- 2A - UI + 6At74i9F + 3B (A - B) (B - C) G-aiM, (4%) (6.6) 

We substitute in (6.6) q(t) from the Euler-Poinsot motion and 

age the function q* over its period. Finally, for the trajectory 

of the vector G enveloping the axis t,(G2 > 2TB), we have 

N = B + C - 2A + 3(2gf -l)[C + (B - Cf(;$“(y)] 
(6.7) 

Here X(k), E(k) are complete elliptic integrals; 

kf’ = (B - C) (2TA - G*) 
(A - a) (Cl - 2TC) 

aver- 

(Fig. 2) 

(6.8) 

For the trajectory of the vector G enveloping the axis z,(G* < 2TB), 

it is necessary to simply interchange A and C in the formulas (6.7) and 

(6.8) l 

The quantity N depends on the satellite moments of inertia and the 
relation G*/T which determines the trajectory in Fig. 2 and is constant 
in the approximation considered. For satellite rotation about the axes 
z,(G* = !&“A), z3(G2 = ZTC) we obtain from (6.7) 

N=B+C-2A<O, N==B+A-2C>O 

In case of dynamic symmetry {A = B) the formulas (6.6) and 12.5) give 

N'= 6ACTG4- A - 2C = (A-C) (2-3 sin” 0),0 rconst (W 

In the considered approximation the relative motion of the satellite 

is composed of the Euler-Poinsot motion about the vector G (for constant 

G and 7’) and the motion of the vector G itself in space described by the 
equations (6.4) for 6, h. Let us study these equations taking as the in- 

dependent variable the true anomaly v. Taking into account (1.11, (3.4) 

and (6.41, we write the equations for 6, h in the form 

(&lo) 

55 ==%(I +ecosv)cosBcosa(h 
dv - VI (6.11) 

Apparently, the introduced dimensionless quantity K is of order E 
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and is constant in the considered approximation (in view of the con- 
stancy of G, 2 and N). 

In the case of a circular orbit (e = 0) the equations (6.10) possess 
the first integral 

cos8+~?csina6cos2(h--v) =const 

and their integration is reduced to quadratures. 

It is simpler, however, to again apply the asymptotic methods for 

solving (6.10). A s was indicated above, the introduced averaged equa- 
tions determine the quantities 6, A within the accuracy of order a2 (or 
K~) on the interval Av w a-l * K -l. Therefore, it is sufficient to solve 
the equations (6.10) within this accuracy by finding the asymptotic 
solution in the second approximation in u. The system (6.10) is in 
standard form [51. Its solution in the second approximation is sought 
in the form 

s=g $xu(v,Erq), ~=~+~abEAl) (6.12) 

Determining the functions u, v by the known procedure [51, we obtain 

u=&sinE [3cos(2y-2~$-l-3ecos(v -2q)+ecos(3v--2q)l (6.13) 

2: = $ cos E, [3 sin (2~ - 2~$ + 6e sin Y + 3e sin (Y - 2$ + e sin (3v - 2rQ] 

Ihe variables c, rl satisfy the system of second approximation 

dE -!- x2ea sin E cos E sin 2q dv= 8 
drl -Lcos~ -+- 
dv= 2 

&x2 (3 cos”E - l)(l++e2 + eacos 2q) (6.14) 

Let us find within the required accuracy (error of order K= on the 
interval of time of order K-~) the solution of system (6.14), satisfy- 
ing the initial conditions t(O) = go, q(O) = T+,. It is easy to see that 
for such a solution in the interval Av Q tc-l the estimates 

j - %o = 0 @I, rl - rlo --+v cosg, = O(x) (6.15) 

are valid which yield the solution of the system (6.14) in the first 
approximation. Transforming the right-hand sides of (6.14) with the aid 
of t6.15), and neglecting terms O(K~) which includes errors in the solu- 
tion of O(K’), we have 

dg 
dv= f x2ea Sin E. co9 E 0 sin (2rlo f XV cos E,) 
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drl -Lc cos&) -&(E 
1 (6.16) 

-&= 2 - go) sin go + =x2 (3 cos2g, - 1) x 

x [ 1+ +- es + e2 cos (2qo + XV cos go)] 

Solutions of the system (6.16), satisfying the initial conditions, 
are 

E =Eo+$1Ce2sin~o ~eos2~,-cos(2~~i_~vcos~o)] (6.47) 

7=‘l0++ XvCOSCo + &Xav[(3COS2~0A1)(1 +$ e2)-eeZsi.n2~,~OS2q,] .+ 

+ $xe2 COS 5 0 [sin (2% + xv cos go) - sin 2~1 

Substituting (6.13) and (6.11) into (6.12), we obtain 

&=go+& x sin go (6 cos [(Z - x cosrr,,)v - 2~1 + 

+ 6ecos [(I -~xos~O)~ - &,I + 2ecos [(3 -~ccos~~)~ - 27,~ + 

+ 3e2 cos 2rlo - 3ea cos (xv cos go + 2~)) 

h=?jo++vcosf,+ +PvJ(3.cos*~0- 1)(1 +$e2)-e2sin2~ocos2qo] f 

+ 4 x cos go {S sin [(2 - x cos gO) v - 2q0] + 12e sin v + 

-+ 63 sin [(1 - x cos Ed) v - 2~1 + 2e sin [(3 - x cos Ed) v - 2~1 + 

+ 3e2 sin (1cv cos co + 2q4 - 3e2 sin 274 (6.18) 

This solution of the systan (6.10) differs from the exact one by the 
I 

quantities of order K’ in the interval Av Q I<-', and &, and q,, are 
arbitrary constants. If one is limited to the accuracy of order K, 

the solution (6.18) simplifies and 
15 

then 

8 = %a, h = ~o+%lsxvcos%o (6.19) 

This solution of first approximation de- 
scribes the rotation of the angular momentum 
vector, for constant 6, about the normal to 
the orbit plane with the velocity, in accord- 
ance with (6. Xl), given by 

3= 344N cos & 
4G fl - 9)” 

(6.20) Fig. 3. 

For A = B and e = 0, utilizing the expression (6.9) for N, we obtain 
the formula derived by Beletskii [d. 

The trajectories of the trace of the angular momentum vector on a 
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unit sphere, fixed in the r1z2r3 coordinate system, in the first approxi- 
mation represent circles with S = const. In the second approximation 
there appear oscillations of the angles 6 and A. and for increasing aver- 
age values of B (i.e. $6) from 0 to 42 the amplitude of 6 oscillations 
increases while the amplitude of A oscillations, as well as the average 
angular velocity of rotation, decreases. The total velocity A for 
6 # n/2 does not change sign and vanishes only at separate points where 
also b = 0 (see (6.10)). For 6 * r/2 the variations in h will be the 
quantities of second order compared to variations in 6. The trajectories 
of the vector 0 on a unit sphere, fixed relative to x1x2x3, are shown 
in Fig. 3 with the effects indicated above, where K > 0 (for K < 0 only 
the direction of motion, indicated by arrows, changes along the trajec- 
tories). 

On a circular orbit (e = 0) the oscillations ‘of 6 and h are nearly 
sinusoidal with the angular frequency equal to twice the velocity of 
the orbital motion, and the curves in Fig. 3 are nearly cycloids subject 
to compression or extension along the axes of the coordinates. In the 
case of an elliptic orbit the oscillations of 6 and h become more com- 
plex: there appear the first and third harmonic as well as a substantial 
dependence of the form of oscillations upon the initial condition qe, 
but the basic properties of the trajectories in Fig. 3 remain unaltered 
(particularly the existence of cusps directed towards the poles). 

The regions of applicability for the asymptotic solutions in Sections 
5 and 6, apparently, intersect: for o >> ma (rapid relative motion) and 
nearly equal A, B, C, the results in Section 5 coincide with the first 
approximation in Section 6. Note, however, that the presented method is 
applicable for study of the rapid relative motion of a rigid body 
subject to moments of any nature. 

The author is grateful to N.N. Moiseev for valuable advice. 
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